

Community-based climate risk mapping for transformative climate action

Dar es Salaam

Venla Aaltonen (UTU), Dr. Nelly Babere (ARU), Dr. Lukuba Sweya (ARU), Prof. Niina Käyhkö (UTU)

kadi-project.eu

Venla Aaltonen University of Turku

Dr. Nelly BabereArdhi University

Dr. Lukuba SweyaArdhi University

Hilary Mvungi Ardhi University University of Turku

Msilikale Msilanga, PhD University of Turku

Prof. Niina Käyhkö University of Turku

Geographical context Growing city of Dar es Salaam

Geographical context (1/4) Growing city of Dar es Salaam

Olipa, S. (2022). Simulating land surface temperature using biophysical variables related to building density and height in Dar Es Salaam, Tanzania

Geographical context (3/4) **Urban fabric as a risk multiplier**

Climate induced hazards and their adverse effects on lives, livelihoods and the environment are **exacerbated** by the interplay of both **climate** change and the characteristics of the urban fabric itself

Densely built areas Heat-absorbing materials Sparse vegetation

Urban heat island

Deforestation Impervious surfaces

Rainfall runoff **Erosion**

Inadequate infrastructure Insufficient services

Blocked drainages Solid waste burning

Geographical context (4/4) Data gaps and challenges

Barrier to true transformation towards climate resilience is **lack of up-to-date data** on climatic and environmental phenomena and the urban infrastructure

 Limited observation and monitoring network (investment to improve the network in Tanzania)

Alternative ways to close the data gap are needed

- Proxy data (e.g. traffic volumes to estimate air quality)
- Earth Observation (e.g. to generate LSTs)
- Citizen science (e.g. to record urban communities' vast local knowledge of their living surroundings)

KADI Climate service pilot – Dar es Salaam Community-based climate risk mapping for transformative climate action

Dar es Salaam climate service pilot (1/5) **Description**

"Climate service of communitybased climate risk mapping for transformative climate action"

- How citizen science can contribute to data gaps regarding climate stressor occurrence in cities in neighborhood-scale?
- Communities' local knowledge of climate stressor occurrence recorded with mobile tools by digitally skilled youth

Theory of Change: When operational, urban planning officials, local communities, meteorological agency, NGOs and businesses can quickly acquire missing information on neighborhood-scale to plan and execute improved climate adaptation and mitigation actions

Dar es Salaam climate service pilot (2/5) Participants

Recording **local knowledge** into **digital geospatial data** representing community members' **climate stressor experiences**, compatible with other data sources

400 community members in Tandale and Kigogo wards of Dar es Salaam

Local knowledge of where <u>floods</u>, <u>extreme heat</u> and <u>air pollution</u> are experienced in the community members' living environments

10 students from ARU with experience of community mapping during RA

Discussing and mapping with community members using mobile tools and web-based mapping platform

25 urban stakeholders in a round-table

Identifying solution pathways answering local communities' climate adaptation needs

KADI Climate service pilot – Dar es Salaam Result highlights

Dar es Salaam city pilot climate service design

Participatory mapping data analysed, visualised and brought back to communities

KADI Climate service pilot – Dar es Salaam Lessons learned

Lessons learnt (1/3) The methodology

Citizen science approaches

- Addressing data scarcity rapidly
- Builds trust and ownership, and highlights often overlooked local knowledge
- Decisions are context-smart, appropriate and long-lasting
- Subjective experiences, offering insights into lived issues
- Most effective when combined with other data sources (measured observations) for validation and complementarity
- Mutual respect, empowering engagement, not extractive

Data, tools and methodology

- Mobile-based tools are accessible and adaptable to low-resource environments
- Resilience Academy approach for efficient data collection and capacity growth for students
- Pre-mapping preparation is essential: understand the local context first to ensure relevance
- Open-source tools are developing fast (ODK Collect, QField, PARTIMAP)
- Ensuring privacy while promoting open science

Lessons learnt (2/3) Action and scaling

From data to action

- Goal to generate such data that leads to informed action
- Community-led initiatives AND strong government involvement and political will for large-scale infrastructure upgrades
- Building climate resilience is not just monitoring and collecting data, but transferring the information and knowledge into effective decision-making, resource allocation and action

Scalability and transferability

- Model of community-based data collection of the urban environment is scalable across geographies and themes
- Local tailoring is critical by understanding local needs, geographical context and cultural aspects
- Skilled facilitation team with strong community ties, technical expertise and collaboration with local education institutes

Lessons learnt (3/3) Integration into RIs

Community-generated data reveals realities **not captured by sensors or satellite data** alone.

Participatory mapping is a valuable layer within **climate and urban research infrastructures** (e.g., KADI RI).

Embedding community participation into RI design helps avoid "ivory tower" approaches, promoting inclusive science and innovation.

KADI Climate service pilot – Dar es Salaam Conclusion

Dar es Salaam climate service pilot **Take-away messages**

Urban climate service design: the communities, local knowledge, mobile tools, and skilled youth

- Opportunities of citizen science and community-based approaches
- Urban communities are the experts of their living surroundings
- Co-creation build trust and sustainability
- Skilled youth ready to apply their knowledge for sustainable and climate smart urban development

info@project-kadi.eu

